Program Derivative 0-->N ClrHome Menu("OUTPUT","TABLE",Z,"ANSWER",Y) Lbl Z 0-->T Goto 1 Lbl Y 1-->T Goto 1 Lbl 1 Menu("DEGREE OF EQU","SECOND",2,"THIRD",3,"FOURTH,4) Lbl 2 ClrHome Disp "AX^2+BX+C=0" Disp "Enter A" Prompt A Disp "Enter B" Prompt B Disp "Enter C" Prompt C Disp "Guess?" Input G Disp "Accuracy?" Input L (round(L,0))-->L If L<=0 Then ClrHome Disp "WHAT WOULD BE" Disp "THE POINT OF" Disp "THAT?" Pause Goto 1 End If L>50 Then 1-->S Goto P End Goto A Lbl A ((AG^2)+(BG)+C)-->E ((2AG)+B)-->F If F=0 Then Disp "OOOOPS" Pause Goto 2 End (G-(E/F))-->G (1+N)-->N If T=0 Disp G If N>=L Then Disp FINAL ANSWER=",G Stop End Goto A Lbl 3 ClrHome Disp "AX^3+BX^2+CX+D=0" Disp "ENTER A" Prompt A Disp "ENTER B" Prompt B Disp "ENTER C" Prompt C Disp "ENTER D" Prompt D Disp "GUESS?" Input G Disp "ACCURACY?" Input L (round(L,0))-->L If L<=0 Then ClrHome Disp "WHAT WOULD BE" Disp "THE POINT OF" Disp "THAT?" Pause Goto 2 End If L>50 Then 1-->S Goto P End Goto B Lbl B (AG^3+BG^2+CG+D)-->E (3AG^2+2BG+C)-->F If F=0 Then Disp "OOOOPS" Pause Goto 3 End (G-(E/F))-->G If T=0 Disp G (1+N)-->N If N>=L Then Disp "FINAL ANSWER=",G Stop End Goto B Lbl 4 ClrHome Disp "AX^4+BX^3+" Disp "CX^2+DX+E=0" Disp "ENTER A" Prompt A Disp "ENTER B" Prompt B Disp "ENTER C" Prompt C Disp "ENTER D" Prompt D Disp "GUESS?" Input G Disp "ACCURACY?" Input L (round(L,0))-->L If L<=0 Then ClrHome Disp "WHAT WOULD BE" Disp "THE POINT OF" Disp "THAT?" Pause Goto 4 End If L>50 Then 1-->S Goto P End Goto C Lbl C (AG^4+BG^3+CG^2+DG+E)-->P (4AG^3+3BG^2+2CG+D)-->F If F=0 Then Disp "OOOOPS" Pause Goto 4 End (G-(P/F))-->G (1+N)-->N If T=0 Disp G If N>=L Then Disp "FINAL ANSWER=",G Stop End Goto C Lbl P ClrHome Disp "THAT AMOUNT OF" Disp "ACCURACY" Disp "REQUIRES A LONG" Disp "TIME TO COMPUTE." Disp "DO YOU WANT TO" Disp "CONTINUE?" Disp "(1-YES,2-NO)" Input U If U /= 1 Then If U/= 2 Goto P End If U=1 Then If S=1 Goto A If S=2 Goto B If S=3 Goto C End If U=2 Goto 1 Stop End ----------------------------------------------------- Notes --use the (X squared button) instead of X^2 --to get X cubed use (MATH, 3) --to get the /+= symbol, use (2nd, MATH, 2) --to get x^4 use X carrot 4 --this prgm uses the equ: guess-(f(guess)/f'(guess))